
Reinforcement Learning-based
Optimization for Solid State Disks

July 12, 2019

Sungjoo Yoo

Seoul National University

http://cmalab.snu.ac.kr

• Our problem and solution overview
• Long tail latency in SSD
• Reinforcement learning (RL)

• Small Q table-based solution to reduce long tail latency
• Q table cache to exploit a large number of states at small

cost
• Summary

Agenda

The Tail at Scale, Communication of ACM, 2013

Long tail latency

“If your read is stuck behind an erase you may have to wait 10s of
milliseconds. That’s a 100x increase in latency variance”

Long Tail Latency Problem in SSD

Garbage Collection in Flash-based Storage
Micron, Inc.

• In order to reclaim a block, page copy and block erase are needed
• Plane conflict during page copy can delay the service of subsequent

requests on the plane

Block

1ms
1ms

1ms

1ms

1ms

Our Approach
• Our goal is to reduce the latency incurred by garbage

collection (GC)
•We aim at exploiting idle time to run partial GC operations
• Partial GC = copying a few pages

• Reinforcement learning can
• Learn system behavior, e.g., write intensive phase, idle time

pattern, …
• Make a choice of how many pages to copy for each of idle periods

• “Reinforcement learning (RL) is an area of machine learning inspired by behaviorist psychology,
concerned with how software agents ought to take actions in an environment so as to maximize
some notion of cumulative reward.”

• State (St): a set of environment states

• Action (At): a set of actions of agent

• Reward (rt): reward associated with last action

• Policy (π): agent’s way of action selection at a given time

• At each time step t
• Agent: executes action At

receives state St

receives reward rt

• Environment: receives action At

emits state St+1
emits reward rt+1

[Wikipedia]

Agent
(GC Scheduler)

Environment
(Storage System)

Action AtReward rtState St

Reinforcement Learning

RL assisted GC Scheduler
(Agent)

Storage System
(Environment)

Action: # of partial GCsReward from response timeState:
SSD internal information

Request 1 Request 2 Partial GC Request 3 Partial GC

Free blocks > th # Free blocks <= th

Execute action a1

Choose
an action, a1

Choose
an action, a0

GC triggering

Execute action a0

Get a reward for action a1

Choose
an action´

Solution Overview

• States
• Previous inter-request interval
• Current inter-request interval
• Previous action

• State binning
• 68 states Previous inter-

request interval [μs] Previous action Current inter-
request interval [μs]

< 100 < max action/2 < 100
< 500

> 100000
> max action/2

> 100

> max action/2 > 100000

[Kang, 2017]

Table Contains Q-Values, Expected Cumulative Reward

Action 0 Action 1 Action 2
State 1
State 2
State 3

Q table

• Assign the larger reward to the smaller latency
• Three thresholds
• Adjust based on the distribution of response time
• t1, t2, and t3: 70th, 90th, and 99th percentiles of the response time,

respectively

1

0.5

0.2

-0.5

t1 t2 t3

Response time [μs]

Re
w

ar
d

[Kang, 2017]

Reward

• Actions
• # of partial GC operations
• 0 ~ 2 page copies

• GC trigger threshold
• # free blocks <= 10

• Exploitation and Exploration balance
• ε-greedy technique

ε= 0.8 for the first 1000 GC operations to perform aggressive
exploration
ε= 0.01 for the rest of period to exploit the learned policy

[Kang, 2017]

RL-Assisted GC Scheduling (RLGC)

Action 0 Action 1 Action 2
State 1
State 2
State 3

Q table

• Q value, Q(s,a)
• Expected cumulative reward from taking action a in state s

• Bellman equation
• Q value will ultimately approach this expectation when an optimal policy is used

• s’ and a’ are the next state and the action in the next state
• r + g max Q(s’,a’) works as the target Q value to learn in Q learning

Q Learning

Action 0 Action 1 Action 2

State 1

State 2

State 3

max Q(s’, a’)

RL assisted GC Scheduler
(Agent)

Storage System
(Environment)

Action: # of partial GCsReward from response timeState:
SSD internal information

Request 1 Request 2 Partial GC Request 3

Free blocks > th # Free blocks <= th

Execute action a1

Choose
an action, a1

Choose
an action, a0

GC triggering

Get a reward r for action a1

Choose
an action´

Latency à Reward

1

t1 t2 t3

Response time
[μs]

R
ew

ar
d 0.5

0.2

-0.5

[Kang, 2017]

Request 1 Request 2 Partial GC Request 3

Free blocks > th # Free blocks <= th

Execute action a1

Choose
an action, a1

Choose
an action, a0

GC triggering

Get a reward r for action a1

Choose
an action´

Q Learning
Action 0 Action 1 Action 2

State 1

State 2

State 3

• How to obtain max Q(s’,a’)?

• Boostrapping
• The current largest Q value of the

next state is used

max Q(st+1, ai)

Find the largest Q value for state s3
in the Q-table (called bootstrapping)

State 2 State 3

• How to update Q value?

• Incremental update of Q value
• Called time difference (TD) learning
• Try to reduce the gap between the current target Q

value, r + g max Q(s’,a’) and the current Q value, Q(s,a)

Q Learning

Action 0 Action 1 Action 2

State 1

State 2

State 3

Current target Q value
Current Q value

Experimental Setup

• Implemented our proposed method, LazyRTGC and page-
level GC on FlashSim
• Results are normalized to the state-of-the-art method,

LazyRTGC
•Workload: 8 real world workloads

(6 from FIU, 2 from MS and 1 from filebench)

[Kang, 2017]

• Long tail latency comparison
(normalized to LazyRTGC)
• Average latency (99.9999th,

99.99th, 99th)
• Ours (Base): 0.86×, 0.94×, 0.92×
• Ours (Aggr): 0.76×, 0.71×, 0.92×

[Kang, 2017]

Experiments

0
0.2
0.4
0.6
0.8

1
1.2

home1
home2

home3
home4

web+on

webmail

MSN
SFS

RBESQ
L

oltp AVG

99.9999th percentile

Lazy Base Aggr

0
0.2
0.4
0.6
0.8

1
1.2

home1
home2

home3
home4

web+on

webmail

MSN
SFS

RBESQ
L

oltp AVG

99.99th percentile

Lazy Base Aggr

0
0.2
0.4
0.6
0.8

1
1.2

home1
home2

home3
home4

web+on

webmail

MSN
SFS

RBESQ
L

oltp AVG

99th percentile

Lazy Base Aggr

• The more state information (the more states), the better latency
• However, we need an extremely large Q table having 88 x 108 states

17

Information used for state # of bins
Current (t) inter-request interval 32

Previous (t-1) inter-request interval 32
Previous (t-1) action (# of performed partial gc) 3
Previous (t-2) action (# of performed partial gc) 3
Previous (t-3) action (# of performed partial gc) 3
Previous (t-4) action (# of performed partial gc) 3
Previous (t-5) action (# of performed partial gc) 3

of free blocks 12
Previous (t-1) request size 5
Previous (t-2) request size 5

Previous (t-1) valid page copy (performed or not) 2
Previous (t-2) valid page copy (performed or not) 2

Previous (t-1) block erase (performed or not) 2
Previous (t-2) block erase (performed or not) 2

Current (t) requested operation 2
Previous (t-1) requested operation 2
Previous (t-2) requested operation 2

State information and # of bins

[Kang, 2018]

What if More States Are Used?

Latency variation according to the number of states in home1

• There are a few frequently visited states
• They change across periods

18

Period 1 Period 2 Period 3 Period 4
State # Count State # Count State # Count State # Count

199813153 3152 199803970 5779 424000545 1246 274455586 123
349109313 963 349133890 2524 199822369 328 200025122 88
274455585 853 424000545 132 423757951 321 199803969 88
423760929 849 199804036 55 423831585 279 199914530 86
199887871 627 423907361 49 274621473 181 199803938 85
199969825 593 423969825 48 423757857 127 199803937 79
199803937 543 199804063 35 199960609 122 274454562 77
199886881 464 199804003 24 274454563 111 199969857 77
274482209 323 199804899 22 199831585 98 274474049 73
349189153 300 199803999 22 274455585 84 274537506 73

Top rank states and access counts in home2

Locality in Visiting States
[Kang, 2018]

19
Required memory size: 98GB Required memory size: 2.34KB

• Instead of having a large Q table
• Manage a small cache to keep recently visited states
• 100 entries per action (3 tables for 3 actions, i.e., 0/1/2-page copy)
• LRU (Least Recently Used) policy in replacement

• In case of inserting a new entry to Q-table cache
• Q-value is initialized to 0 and 0-page copy is adopted

Action 0 Action 1 Action 2
State 1
State 2
State 3

State Q-value
Action 0

100 entries

State Q-value
Action 1

State Q-value
Action 2

Conventional Q-table Proposed Q-table cache

Proposed Idea: Q-table Cache (QTC)
[Kang, 2018]

• FlashSim simulator
• 3D 128Gb, 3D 512Gb flash memories
• 11 workloads

(home1, home2, home3, home4, webmail+online, webmail, MSNSFS, RBESQL,
oltp, TPCC, TPCE)

• Compared with RLGC

20

Experimental Setup
[Kang, 2018]

21

0.32
0.23 0.2

0.82 0.78

0

0.2

0.4

0.6

0.8

1

1.2

hom
e1

hom
e2

hom
e3

hom
e4

web
+o

nlin
e

web
m

ail

M
SN

SF
S

RBE
SQ

L
oltp

TP
CC

TP
CE

AVER
AGE

99.9999th percentile latency

Ours

0.82
0.61

0.18

0.88

0

0.2

0.4

0.6

0.8

1

1.2

hom
e1

hom
e2

hom
e3

hom
e4

web
+o

nlin
e

web
m

ail

M
SN

SF
S

RBE
SQ

L
oltp

TP
CC

TP
CE

AVER
AGE

99.99th percentile latency

Ours

0.77
0.98

0

0.2

0.4

0.6

0.8

1

1.2

hom
e1

hom
e2

hom
e3

hom
e4

web
+o

nlin
e

web
m

ail

M
SN

SF
S

RBE
SQ

L
oltp

TP
CC

TP
CE

AVER
AGE

99th percentile latency

Ours

• Average latency (99.9999th, 99.99th, 99th)
• Base: 1×, 1×, 1×
• Ours: 0.78×, 0.88×, 0.98×

Normalized to the baseline RLGC

Latency Comparison (3D NAND 512Gb)
[Kang, 2018]

• Problem
• Long tail latency reduction in SSD

• Q learning based solutions
• Simple Q-table solution: 22~25% reduction
• Q-table cache to exploit much more states: 11~25% further reduction

• Future work: Applying reinforcement learning to buffer management in SSD
• Write back from buffer to Flash memory
• Prefetch from Flash memory to buffer

Summary

• [Kang, 2017] W. Kang, D. Shin, S. Yoo, "Reinforcement Learning-
Assisted Garbage Collection to Mitigate Long Tail Latency Problem,"
ACM Transactions on Embedded Computing Systems (TECS), Oct.
2017.

• [Kang, 2018] W. Kang, S. Yoo, "Dynamic management of key states for
reinforcement learning-assisted garbage collection to reduce long tail
latency in SSD," Proc. Design Automation Conference (DAC), June
2018.

Reference

